Secciones

Una Tecnología de última generación permite la autorregeneración de los huesos de los seres humanos

DESCUBRIMIENTO. La unión de fosfato cálcico y vidrio bioactivo, junto con una técnica láser de impresión, lo ha hecho posible.
E-mail Compartir

Redacción

Los huesos son estructuras fundamentales en nuestra vida. Sin ellos no podríamos andar, saltar, caminar, etc. A medida que nuestra edad avanza nuestro cuerpo comienza a tener, con mayor frecuencia, problemas de este tipo. De hecho, las patologías óseas, artritis, artrosis, osteoporosis, osteomielitis, rotura de caderas, etc, son muy comunes en ancianos.

Pero no existen afecciones óseas únicamente provocadas por la edad. Existen también alteraciones de estas estructuras debido a enfermedades tan graves como el cáncer que incluso han tenido que llegar a ser extraídas en su totalidad o parcialmente para realizar la extracción de tumores. Y no olvidemos las deformidades congénitas o las provocadas por accidentes traumáticos.

Pues bien, todo esto ha hecho que la ciencia avance hacia la mejora de la salud de estas personas que sufren algún tipo de anomalía ósea, sea cual fuese su origen. Y este avance va dirigido hacia el uso de materiales biomédicos para reparar o reemplazar dichas estructuras.

En este sentido, investigadores de la Universidad de Vigo y el Imperial College y la Unidad de Ciencias Físicas y Dental de Londres han dado un paso de gigante y han puesto al servicio de la medicina una tecnología altamente puntera: desarrollo de unos implantes que funcionan como guía-modelo para la posterior regeneración ósea.

Este equipo, como se expone en Scientific Reports, centró su interés en las reconstrucciones craneofaciales. Emplearon una técnica similar a la 3D, que está teniendo gran desarrollo en la medicina regenerativa actual, combinando por primera vez dos tipos de materiales: el fosfato cálcico que es el principal componente inorgánico de los huesos y el vidrio bioactivo.

Una nueva aleación

La mezcla del fosfato cálcico y del vidrio bioactivo genera una aleación perfecta que permite crear huesos perfectamente compatibles con nuestro cuerpo y sin que generen ningún tipo de toxicidad.

Estas piezas se diseñan y se introducen en el cuerpo humano. Allí actuarían como sustitutos temporales, ya que son reabsorbidas por el organismo a medida que el propio hueso del paciente crece. Nuestras células, a medida que crecen, se van adhiriendo a los biomateriales y van creciendo por encima del implante. El resultado final, un hueso propio.

La reconstrucción de partes del cuerpo dañadas es una realidad. Probablemente, a todos nos viene a la mente algún caso de un familiar o de un amigo que necesite un implante o prótesis o se haya sometido ya a una cirugía para su introducción.

El material artificial con el que se crean los implantes son de diversa naturaleza, materiales cerámicos, metálicos, polímeros o materiales compuestos. Estos biomateriales empleados deben de ser biocompatibles con el cuerpo humano y asegurar una vida media determinada. Sin embargo, en los últimos años el avance en el campo de estos compuestos ha experimentado un espectacular desarrollo.

Así lo demuestra el estudio que nos ocupa, el cual, aporta un innovador avance científico. La pieza implantada en el cuerpo humano, es temporal y sirve, digámoslo así, como un molde que va indicando al verdadero hueso como crecer y por donde extenderse. Realmente a veces los avances científicos parece que rozan la ciencia-ficción. Imaginemos por un momento los beneficios que este tipo de implantes generarían.

¿Qué supone este avance?

Las estructuras que van a ser introducidas en nuestro cuerpo no son tóxicas, son perfectamente biocompatibles con el cuerpo humano y no se necesitarían nuevas cirugías para su sustitución por una nueva, ya que nos permitirían tener una estructura ósea propia.

Los investigadores consideran que es una técnica bastante útil para aquellas zonas de hueso donde los implantes tradicionales tienen un difícil acceso.