Secciones

Células solares bajo la piel garantizarán el funcionamiento de los marcapasos

E-mail Compartir

La idea de usar pequeñas células solares, colocadas bajo la piel, para recargar dispositivos médicos electrónicos implantados en el organismo es viable, han revelado los cálculos matemáticos de un equipo de investigadores del Hospital Universitario de Berna y la Universidad de Berna (Suiza).

Más concretamente: Una célula solar de 3,6 centímetros cuadrados colocada bajo la piel es todo lo que se necesitaría para generar suficiente energía durante el invierno y el verano para alimentar un marcapasos típico.

Este estudio es el primero en proporcionar datos reales sobre el potencial del uso de células solares para alimentar dispositivos como marcapasos y estimuladores cerebrales profundos.

Según el autor principal de la investigación, Lukas Bereuter, el uso de células solares instaladas bajo la piel algún día podría ahorrar a los pacientes la molestia de tener que someterse continuamente a procedimientos para cambiar las baterías de dichos dispositivos.

Pruebas realizadas

Actualmente, la mayoría de los implantes electrónicos son alimentados por baterías que, cuando se agotan, deben ser recargadas o cambiadas.

En la mayoría de los casos, esto supone que los pacientes tengan que someterse a procedimientos de reemplazo de implantes, que no son sólo costosos y estresantes, sino que además entrañan el riesgo de dar lugar a complicaciones médicas.

Recientemente, varios grupos de investigación han presentado prototipos de pequeñas células solares electrónicas que pueden ser colocadas bajo la piel y pueden utilizarse para recargar dispositivos médicos. Estas células solares convertirían la luz del sol que penetra a través de la piel en energía.

Bereuter y sus colaboradores comprobaron la efectividad de dichas células con diez dispositivos cubiertos con filtros ópticos, que simulaban la piel filtrando la luz del sol. Los dispositivos fueron llevados en los brazos por 32 voluntarios suizos durante una semana de verano, de otoño y de invierno.

Se constató así que, independientemente de la estación, las células solares minúsculas presentes en los dispositivos generaron mucho más de los 5 a 10 microvatios de energía que un marcapasos cardíaco típico precisa.

Un compuesto de los ojos y la piel servirá para fabricar aparatos miniaturizados

ESTUDIOS. Investigadores brasileños desarrollan una metodología para sintetizar melanina para biosensores
E-mail Compartir

Uno de sus desafíos consiste en identificar y hacer posible el uso de materiales que, además de tener conductividad electrónica (a base de electrones), también posean conductividad iónica (a base de iones), que es en la que se fundamenta la comunicación y el proceso de comunicación entre los neurotransmisores, por ejemplo. Y que, asimismo, sean biocompatibles con el cuerpo humano.

Investigadores de la Facultad de Ciencias de la Universidade Estadual Paulista (Unesp), en su campus de la localidad de Bauru (São Paulo, Brasil) han logrado ahora desarrollar una nueva metodología que permite utilizar la melanina, un compuesto polimérico que dota de pigmentación a la piel, los ojos y el cabello de los mamíferos, en dispositivos miniaturizados e implantados, como los biosensores, informa DICYT.

Algunos de los resultados de sus investigaciones se han dado a conocer el pasado mes de noviembre en una conferencia en la FAPESP Week Montevideo, organizada por la Asociación de Universidades Grupo Montevideo (AUGM), la Universidad de la República (UDELAR) y la FAPESP.

Ventajas y desafíos de la melanina

Según los investigadores, hasta ahora, todos los materiales que se han probado para bioelectrónica han sido completamente sintéticos. Sin embargo, la melanina presenta grandes ventajas porque, al ser un compuesto totalmente natural y biocompatible con el cuerpo humano, tiene potencial para su utilización en dispositivos, con la función de efectuar la interfaz entre las neuronas cerebrales y la electrónica.

Uno de los desafíos a la hora de utilizar la melanina como material para el desarrollo de dispositivos bioelectrónicos reside en que este compuesto -al igual que otros materiales a base de carbono, como el grafeno- tiene baja dispersión en un medio acuoso, lo que dificultaba hasta hace algún tiempo su utilización en la producción de películas delgadas.

Asimismo, el proceso convencional de síntesis de la melanina es complejo. Comprende etapas cuyo control resulta difícil, y puede extenderse hasta 56 días y resultar en estructuras desordenadas.

La melanina biosintética

Mediante una serie de estudios realizados en el Centro de Desarrollo de Materiales Funcionales (CDMF) -uno de los Centros de Investigación, Innovación y Difusión (CEPIDs) apoyados por la FAPESP- el investigador Carlos Frederico de Oliveira Graeff y sus colaboradores obtuvieron melanina biosintética con buena dispersión en agua y muy similar a la natural a través de una nueva ruta de síntesis.

El proceso desarrollado para tal fin tarda tan sólo algunas horas y se basa en cambios de parámetros como la temperatura, y en la aplicación de presión de oxígeno para generar la oxidación del material.

Al aplicar presión de oxígeno, los científicos lograron incrementar en el material la densidad del grupo carboxílico -compuesto por dos átomos de oxígeno unidos a un carbono: uno a través de una doble unión y otro a través de una unión simple-, lo cual aumenta la solubilidad y la facilidad para obtener suspensiones de melanina biosintética en agua; y facilita bastante la obtención de películas delgadas de melanina con alta homogeneidad y buena calidad. Mediante el aumento de la densidad del grupo carboxílico, los investigadores también obtuvieron una melanina biosintética más similar a la biológica.

A través de colaboraciones con instituciones de investigación de Canadá, los científicos brasileños han empezado ya a utilizar este material en una serie de aplicaciones, tales como contactos eléctricos, sensores de pH y células fotovoltaicas.

Más recientemente, han dado comienzo además al desarrollo de transistores, componentes electrónicos empleados como amplificadores o interruptores de señales eléctricas, entre otras funciones.

La bioelectrónica es un campo de investigación que combina componentes electrónicos y biológicos para desarrollar dispositivos miniaturizados capaces de alterar y controlar señales eléctricas en el cuerpo humano mediante su implante.